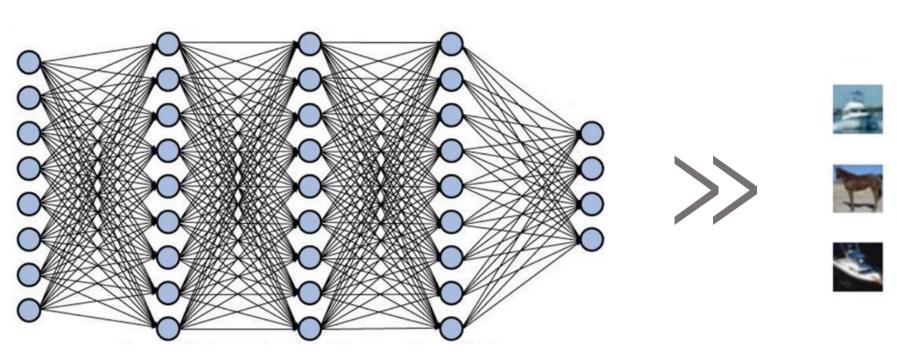


Noam Razin*

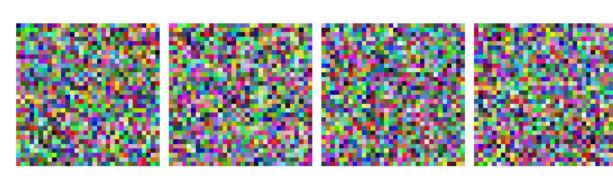
I) Implicit Regularization in Deep Learning (DL)

Deep neural networks (NNs) are typically overparameterized



With "natural data" predictors found by gradient descent (GD) generalize well **Conventional wisdom:** implicit regularization towards low "complexity" predictors **Goal:** mathematically understand this implicit regularization Challenge: lack complexity measures that capture essence of natural data

X high complexity



Can we characterize the implicit regularization in concrete settings?

II) Common Testbed: Matrix Factorization (MF)

Matrix Completion: recover unknown matrix given subset of entries

	Avenuens	THEPRESTIGE	NOW YOU SEE ME	LEONARDO DICAPRIO MAIDINSDREEE OF WALL STREET
Bob	4	?	?	4
Alice	?	5	4	?
Joe	?	5	?	?

 $d \times d'$ matrix completion \longleftrightarrow prediction task from $\{1, ..., d\} \times \{1, ..., d'\}$ to \mathbb{R}

In many real-world scenarios matrices of interest have low rank

Matrix Factorization

Parameterize solution as product of matrices and fit observations with GD

	4	?	?	4						
	?	5	4	?	=	W _L	* • • • *	W_2	*	W_1
Γ	?	5	?	?						

 $MF \leftrightarrow solving matrix completion via linear NN (w/o explicit regularization!)$

Past Work (e.g. Arora et al. 2019, Razin & Cohen 2020, Li et al. 2021) In MF (with small init and step size) implicit regularization minimizes rank

Limitations of Matrix Factorization

(1) Captures prediction over only 2 input variables (2) No non-linearity

We study tensor factorization — accounts for both (1) and (2)

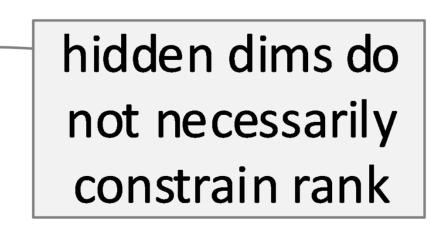
Implicit Regularization in Tensor Factorization

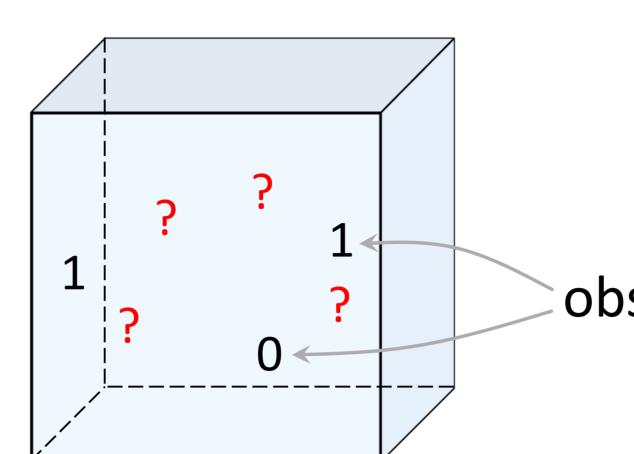
Asaf Maman* Nadav Cohen

Tel Aviv University

III) Beyond Matrix Factorization: Tensor Factorization (TF)

Tensor Completion: recover unknown tensor given subset of entries





 $[d_j] := \{1, \ldots, d_j\}$ (1) $d_1 \times \cdots \times d_N$ tensor completion \longleftrightarrow prediction task from $[d_1] \times \cdots \times [d_N]$ to \mathbb{R}

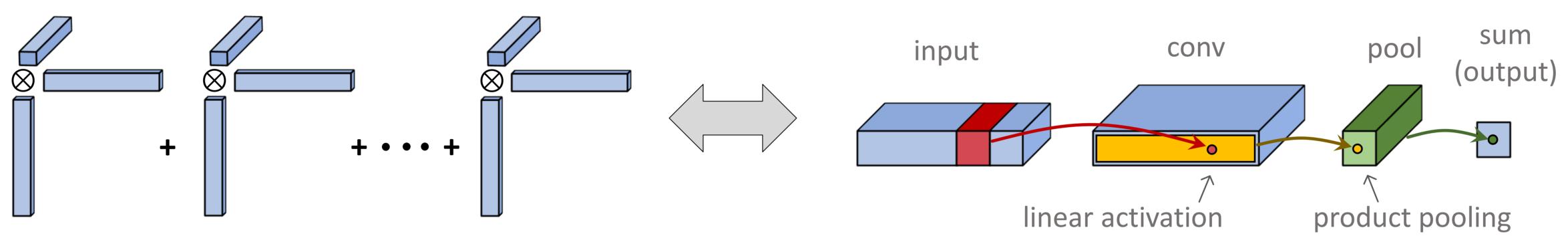
Tensor Factorization

Parameterize solution as sum of outer products and fit observations with GD:

 $\min_{\{\mathbf{w}_r^n\}_{r,n}} \sum_{(i_1,\ldots,i_N)\in\Omega} \ell\left(\left[\sum_{r=1}^R \mathbf{w}_r^1 \otimes \cdots \otimes \mathbf{w}_r^N\right]_{i_1,\ldots,i_N} - y_{i_1,\ldots,i_N}\right)$

(2) TF \leftrightarrow solving tensor completion via NN with multiplicative non-linearity

Tensor Factorization



Tensor rank: min # of components required to express a tensor **Razin & Cohen 2020**: GD empirically minimizes tensor rank even when R is large Question: can this empirical phenomenon be supported theoretically?

IV) Dynamics of Learning: Theoretical Analysis

<u>Theorem</u> (Dynamical Characterization of Component Norms) GD (with small init and step size) over TF leads component norms to evolve by:

$$\frac{d}{dt} \| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \|$$

Interpretation

- Small init \implies incremental learning of components \implies low tensor rank

Theorem above leads to:

Theorem (Rank 1 Trajectory)

If tensor completion has a rank 1 solution, then under certain technical conditions and a sufficiently small init TF will reach it

International Conference on Machine Learning (ICML) 2021 *Equal contribution

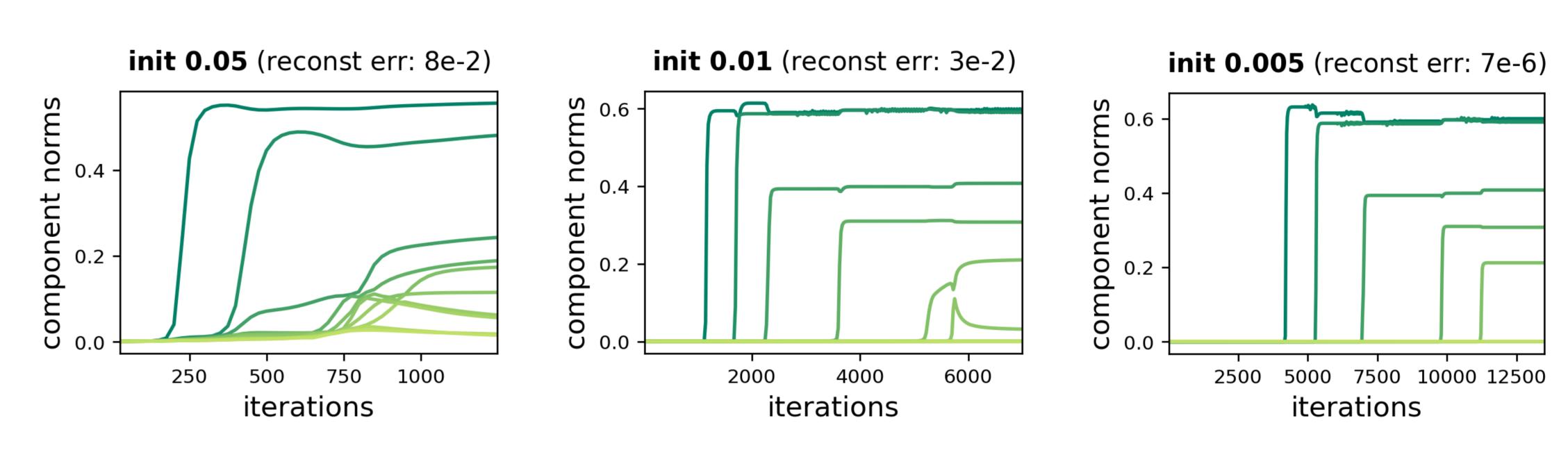
 \supset observations $\{y_{i_1}, \dots, y_{i_n}\}$

Non-Linear Neural Network

 $\left\| \propto \left\| \otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t) \right\|^{2-2/N}$

 $||\otimes_{n=1}^{N} \mathbf{w}_{r}^{n}(t)||$ evolves at a rate proportional to its size exponentiated by 2 - 2/N > 1Momentum-like effect: components move slower when small and faster when large

V) Dynamics of Learning: Experiments



As init \rightarrow 0 fewer components depart from zero

VI) Tensor Rank as Measure of Complexity

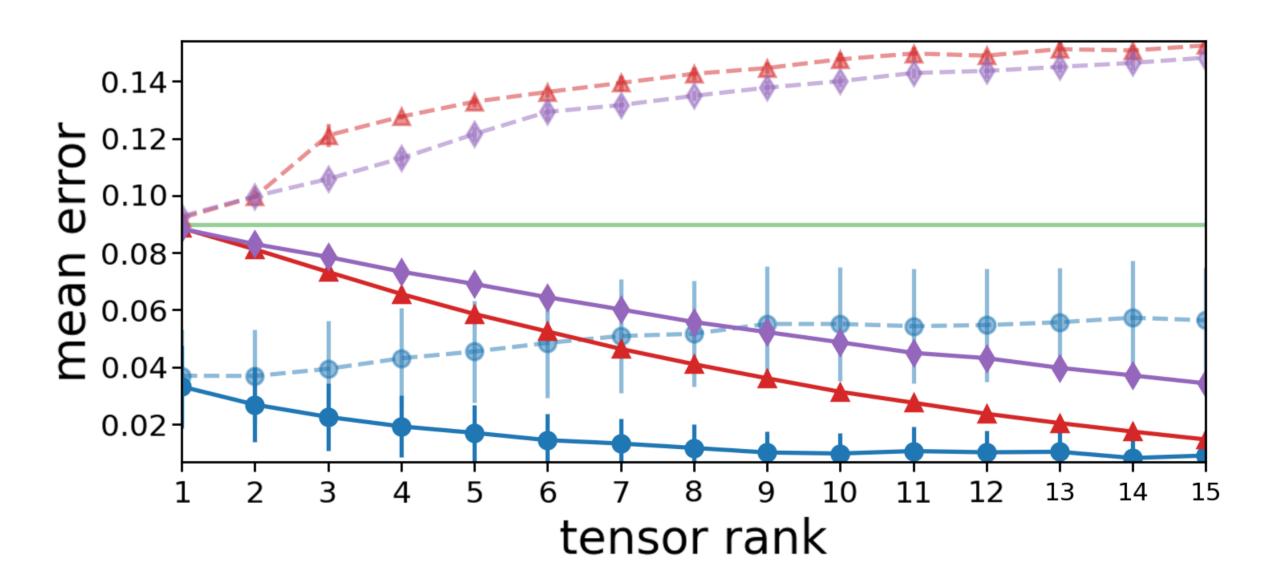
Our analysis: tensor rank captures the implicit regularization of a non-linear NN

Can tensor rank serve as a measure of complexity for predictors?

Experiment (Fitting Standard Datasets With Predictors of Low Tensor Rank)

Dataset: Fashion-MNIST

Compared against two randomized variants:



Original data fit far more accurately than random (leading to low test err)!

Standard datasets can be fit with predictors of low tensor rank!

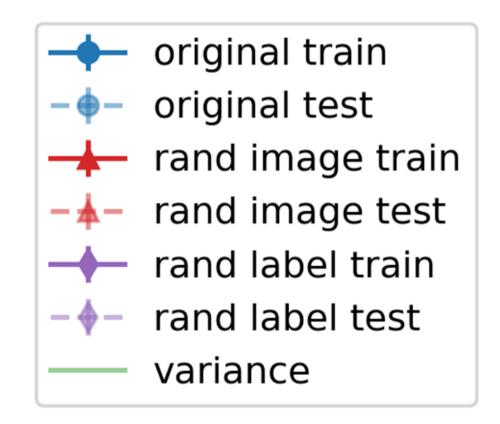
VII) Takeaway

- Implicit regularization of neural networks
- Properties of real-world data translating it to generalization

Experiment (Rank 5 Order 4 Tensor Completion) Component norms during GD over TF with different init scales:

Incremental learning of components leads to low tensor rank!

(i) random images (same labels) (ii) random labels (same images)



Tensor rank may pave way to understanding: