Implicit Regularization in Tensor Factorization

Noam Razin* Asaf Maman®* Nadav Cohen International Conference on Machine Learning (ICML) 2021

Tel Aviv University  *Equal contribution

I) Implicit Regularization in Deep Learning (DL) Ill) Beyond Matrix Factorization: Tensor Factorization (TF) V) Dynamics of Learning: Experiments

Deep neural networks (NNs) are typically overparameterized Tensor Completion: recover unknown tensor given subset of entries Experiment (Rank 5 Order 4 Tensor Completion)
Component norms during GD over TF with different init scales:
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Goal: mathematically understand this implicit regularization Cerations 4 orations tarations
Challenge: lack complexity measures that capture essence of natural data Tensor Factorization .
As init — O fewer components depart from zero

" low complexity Parameterize solution as sum of outer products and fit observations with GD:
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Incremental learning of components leads to low tensor rank!
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VI) Tensor Rank as Measure of Complexity

(2) TF +— solving tensor completion via NN with multiplicative non-linearity

Our analysis: tensor rank captures the implicit regularization of a non-linear NN
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o8 . . Dataset: Fashion-MNIST - - similar results for MNIST
o ) : A : Tensor rank: min # of components required to express a tensor J ( )
Joe > 5 > > Razin & Cohen 2020: GD empirically minimizes tensor rank even when R is large Compared against two randomized variants:
d x d’ matrix completion +— prediction task from {1,...,d} x {1,....,d'} to R Question: can this empirical phenomenon be supported theoretically? () random images (same labels) (i) random labels (same images)
In many real-world scenarios matrices of interest have low rank IV) Dynamics of Learning: Theoretical Analysis 014- — O S S Sk I e o original train
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| | | o o - N o . s . Original data fit far more accurately than random (leading to low test err)!
MF «+— solving matrix completion via linear NN (w/o explicit regularization!) > ||@5_W/(1)|| evolves at a rate proportional to its size exponentiated by 2 —2/N > 1
» Momentum-like effect: components move slower when small and faster when large Standard datasets can be fit with predictors of low tensor rank!

Past Work (e.g. Arora et al. 2019, Razin & Cohen 2020, Li et al. 2021)
In MF (with small init and step size) implicit regularization minimizes rank

» Small init — incremental learning of components — low tensor rank
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Limitations of Matrix Factorization theorem above Ieads.to: Tensor rank may pave way to understanding:
(1) Captures prediction over only 2 input variables  (2) No non-linearity Theorem (Rank 1 Trajectory) - o
If tensor completion has a rank 1 solution, then under certain technical conditions and > Implicit regularization of neural networks
We study tensor factorization — accounts for both (1) and (2) a sufficiently small init TF will reach it » Properties of real-world data translating it to generalization
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